BAYESIAN ANALYSIS OF TOBIT QUANTILE REGRESSION WITH ADAPTIVE LASSO PENALTY IN HOUSEHOLD EXPENDITURE FOR CIGARETTE CONSUMPTION

نویسندگان

چکیده

Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the parameters solved by Bayesian analysis. Parameters are assumed follow certain distribution called prior distribution. Using sample information along distribution, conditional posterior searched using Box-Tiao rule. Computational solutions MCMC Gibbs Sampling algorithm. can generate samples based each in order obtain joint was applied Household Expenditure for Cigarette Consumption 2011. As comparison analysis, used. results analysis show better than Regression.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Quantile regression with group lasso for classification

Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. When the predictors have a natural group structure, such as in the case of categorical predictors co...

متن کامل

Robust Regression through the Huber’s criterion and adaptive lasso penalty

The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...

متن کامل

Bayesian Tobit quantile regression using g-prior distribution with ridge parameter

A Bayesian approach is proposed for coefficient estimation in Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Statistika Universitas Muhammadiyah Semarang

سال: 2023

ISSN: ['2338-3216', '2528-1070']

DOI: https://doi.org/10.26714/jsunimus.10.2.2022.25-33